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Abstract

In a previous paper (2007 J. Phys. A: Math. Theor. 40 11105), we constructed
a class of coherent states for a polynomially deformed su(2) algebra. In this
paper, we first prepare the discrete representations of the nonlinearly deformed
su(1, 1) algebra. Then we extend the previous procedure to construct a discrete
class of coherent states for a polynomial su(1, 1) algebra which contains the
Barut–Girardello set and the Perelomov set of the SU(1, 1) coherent states as
special cases. We also construct coherent states for the cubic algebra related to
the conditionally solvable radial oscillator problem.

PACS numbers: 03.65.Fd, 11.30.Na, 02.20.Sv

1. Introduction

In a previous paper [1], we have constructed a set of coherent states for a polynomially
deformed su(2) algebra. The goal of this paper is to construct a discrete class of coherent states
for a polynomial su(1, 1) algebra by extending the procedure employed for the polynomial
su(2) case. For the usual SU(1, 1) group, there are two well-known sets of coherent states:
the Barut–Girardello coherent states [2] which are characterized by the complex eigenvalues
ξ of the non-compact generator K̂− of the su(1, 1) algebra

K̂−|ξ 〉 = ξ |ξ 〉 (1)

and the Perelomov coherent states [3] which are characterized by points η of the coset space
SU(1, 1)/U(1)

|η〉 = N−1eηK̂+ |0〉, K̂−|0〉 = 0. (2)

These two sets are not equivalent. Since we have no knowledge of the group structure
corresponding to the polynomial su(1, 1) algebra, we are unable to follow Perelomov’s group
theoretical approach. Thus, we construct coherent states in such a way that they are reducible
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either to the Barut–Girardello SU(1, 1) states or the Perelomov SU(1, 1) states in the linear
limit. In the literature [4–6], several authors have proposed various sets of coherent states
for the polynomial su(1, 1) algebra in different contexts. What we wish to study here is a
unified treatment of coherent states of the Barut–Girardello type and the Perelomov type for
the polynomial su(1, 1), which differs from all of those reported earlier.

The polynomial su(2) algebra we considered earlier [1] is a special case of the nonlinearly
deformed su(2) algebra of Bonatos, Danskaloyannis and Kolokotronis (BDK) [7]. BDK’s
deformed algebra, denoted by su�(2), is of the form,

[Ĵ 0, Ĵ±] = ±Ĵ±, [Ĵ +, Ĵ−] = �(Ĵ 0(Ĵ 0 + 1)) − �(Ĵ 0(Ĵ 0 − 1)), (3)

where the structure function �(x) is an increasing function of x defined for x � −1/4. The
Casimir operator for su�(2) is

Ĵ2 = Ĵ−Ĵ + + �(Ĵ 0(Ĵ 0 + 1)) = Ĵ +Ĵ− + �(Ĵ 0(Ĵ 0 − 1)). (4)

On the basis {|j,m〉} that diagonalizes Ĵ2 and Ĵ 0 simultaneously such that [7]

Ĵ2|j,m〉 = �(j (j + 1)) |j,m〉, Ĵ 0|j,m〉 = m|j,m〉, (5)

the operators Ĵ + and Ĵ− satisfy the relations

Ĵ +|j,m〉 =
√

�(j (j + 1)) − �(m(m + 1))|j,m + 1〉 (6)

Ĵ−|j,m〉 =
√

�(j (j + 1)) − �(m(m − 1))|j,m − 1〉 (7)

with 2j = 0, 1, 2, . . . , and |m| � j.

The coherent states we constructed for su�(2) by letting m = −j + n (n =
0, 1, 2, . . . , 2j) were

|j, ξ 〉 = N−1
� (|ξ |)

2j∑
n=0

√
[kn]!

n!
ξn|j,−j + n〉. (8)

Here

kn = �(j (j + 1)) − �((j − n)(j − n + 1)) (9)

and

[kn]! =
n∏

j=1

kn, [k0]! = 1. (10)

The normalization factor was given by

N2
�(|ξ |) =

2j∑
n=0

[kn]!|ξ |2n

(n!)2
. (11)

For our polynomial su(2) case, we imposed the polynomial condition that

�(x) =
p∑

r=1

αrx
r (αr ∈ R) (12)

with αp �= 0. We showed that the coherent states we obtained include the usual su(2) coherent
states and the cubic su(2) coherent states as special cases.

In this paper, we first extend BDK’s su�(2) to a nonlinearly deformed su(1, 1) algebra
and prepare discrete representations for the algebra which correspond to those belonging to
the positive discrete series of the irreducible unitary representations of SU(1, 1). Then we
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construct formally a set of coherent states for the deformed algebra su�(1, 1) by generalizing
the SU(1, 1) group element used for the Perelomov states. As before, we also impose the
polynomial condition (12) to specify the coherent states for the polynomially deformed algebra
su2p−1(1, 1). Out of the formal states so constructed, we select two sets of states which are
reducible to the Barut–Girardello set and the Perelomov set in the linear limit. Finally, we
reformulate the conditionally solvable radial oscillator problem in broken supersymmetric
quantum mechanics, proposed by Junker and Roy [8], in an algebraic manner to show that
the eigenstates of one of the partner Hamiltonians, Ĥ +, in SUSY quantum mechanics can be
identified with a standard basis of the su(1, 1) algebra whereas the set of eigenstates of the
other partner Hamiltonian Ĥ− is identified with a representation space of the cubic algebra
su3(1, 1). We also construct coherent states of the Barut–Girardello type and of the Perelomov
type for the conditionally solvable problem.

2. Polynomial su(1, 1) algebra and its representations

In order to introduce a nonlinearly deformed su(1, 1) algebra in a manner parallel to the
nonlinearly deformed algebra su�(2) of Bonatos, Danskaloyannis and Kolokotronis [7], we
exercise analytic continuation [9–11] on su�(2). Replacing the generators of su�(2) in (3) as

Ĵ 0 → K̂0, Ĵ± → iK̂±, (13)

we extend su�(2) formally into a deformed su(1, 1) algebra,

[K̂0, K̂±] = ±K̂±, [K̂+, K̂−] = �(K̂0(K̂0 − 1)) − �(K̂0(K̂0 + 1)), (14)

which we denote by su�(1, 1) as an extension of BDK’s su�(2). Here, we assume that the
generators of su�(1, 1) in (14) possess the Hermitian properties,

K̂
†
0 = K̂0, K̂

†
± = K̂∓. (15)

We also assume that the structure function �(x) is a differentiable function increasing with a
real variable x � −1/4, and is operator-valued and Hermitian when x is a Hermitian operator.
Accordingly the operator obtainable from the Casimir operator (4) of su�(2) by the analytic
continuation (13),

K̂2 = −K̂−K̂+ + �(K̂0(K̂0 + 1)) = −K̂+K̂− + �(K̂0(K̂0 − 1)), (16)

is Hermitian. From the first equation of (14) immediately follows

K̂r
0K̂± = K̂±(K̂0 ± 1)r (17)

for r = 0, 1, 2, . . . . Since the structure function �(x), assumed to be a real differentiable
function, can be expanded as a MacLaurin series, it is obvious that

�(K̂0(K̂0 ∓ 1))K̂± = K̂±�(K̂0(K̂0 ± 1)). (18)

Therefore, the operator K̂2 of (16), being commutable with all the three generators, is indeed
the Casimir invariant of su�(1, 1).

By imposing the polynomial condition (12) on the structure function in (14), we obtain a
polynomial su(1, 1) algebra,

[K̂0, K̂±] = ±K̂±, [K̂+, K̂−] = −2
p∑

r=1

αrK̂
r
0

r∑
s=1

(K̂0 + 1)r−s(K̂0 − 1)s−1. (19)

When �(x) is a polynomial in x = K̂0(K̂0 + 1) of degree p, the right-hand side of the
second equation of (19) becomes a polynomial in K̂0 of degree 2p − 1. Thus (19) is the
polynomial su(1, 1) algebra of odd degree 2p − 1 (p = 1, 2, 3, . . .), which we denote by
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su2p−1(1, 1). As special cases, p = 1 and p = 2 correspond to the usual su(1, 1) and the
cubic algebra sucub(1, 1), respectively. The present scheme cannot accommodate polynomial
su(1, 1) algebras of even degree.

In analogy with the case of su�(2) represented on the basis {|j,m〉} as in (5), we consider
a representation space for su�(1, 1) which is spanned by simultaneous eigenstates {|k,m〉} of
the Casimir operator K̂2 and the compact operator K̂0. On the basis {|k,m〉}, let K̂2 and K̂0

be diagonalized as

K̂2|k,m〉 = �(k(k − 1))|k,m〉, K̂0|k,m〉 = m|k,m〉. (20)

From the relations (15), (16) and (17), it is clear that the operators K̂± act on the above states
as

K̂+|k,m〉 =
√

�(m(m + 1)) − �(k(k − 1))|k,m + 1〉, (21)

K̂−|k,m〉 =
√

�(m(m − 1)) − �(k(k − 1))|k,m − 1〉. (22)

For the usual su(1, 1) case (p = 1), we wish to take the basis states |k,m〉 from those
of the unitary irreducible representations of the group SU(1, 1). As is well known, the
representations of SU(1, 1) are classified into [11–13]: (i) the positive discrete series D+

n(k),
(ii) the negative discrete series D−

n (k), (iii) the principle continuous series Cn(m0, k) and (iv)
the supplementary continuous series En(m0, k). As for the polynomial su(1, 1), however, the
corresponding group and its representations are not available. In the present work, we are
only interested in constructing a set of coherent states for discrete dynamics of the polynomial
su(1, 1). Therefore, we examine whether the positive discrete series D+

n(k) of SU(1, 1), for
which

k ∈ R+, m − k ∈ N0, (23)

is compatible with su�(1, 1). Here, we have used the notation N0 = N ∪ {0} = {0, 1, 2, 3, . . .}.
The compact generator K̂0 has been chosen to be Hermitian so that its eigenvalues m are

real. As the property (17) for r = 1 indicates, the operators K̂± map eigenstates |k,m〉 of K̂0

into |k,m ± 1〉, respectively. Hence the value of m increases or decreases by integer units as

m = m0 + n, (24)

where m0 ∈ R and n ∈ Z. The eigenvalue �(k(k − 1)) of the Casimir operator K̂2 must be
real. In fact, the structure function has been assumed to be a real function increasing with its
argument greater than or equal to −1/4. Therefore, k must satisfy the conditions

k(k − 1) ∈ R and
(
k − 1

2

)2 � 0, (25)

from which follows

k ∈ R. (26)

Furthermore, (15) yields

〈k,m|K̂†
±K̂±|k,m〉 = 〈k,m|K̂∓K̂±|k,m〉 � 0, (27)

and (16) and (20) lead to

�(m(m ± 1)) − �(k(k − 1)) � 0. (28)

As �(x) is an increasing function, the SU(1, 1) discrete series (23) satisfies these conditions
with m0 = k. Thus, we may choose as the basis {|k,m〉} for su�(1, 1)

k ∈ R+, m = k + n(n ∈ N0). (29)
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In the above analysis, we have not explicitly used the polynomial condition (12) even
though the structure function �(x) was assumed to be expressible as a MacLaurin series of x.

In view of the basis chosen above, we realize that it is more convenient to characterize
the basis states by means of the integral number n rather than m = k + n. Thus, we let the
orthonormalized set {|k, n〉} span the representation space with k ∈ R+ and n ∈ N0. On this
basis, we rewrite (20), (21) and (22) as

K̂0|k, n〉 = (k + n)|k, n〉, (30)

K̂+|k, n〉 =
√

φn+1(k)|k, n + 1〉, (31)

K̂−|k, n〉 =
√

φn(k)|k, n − 1〉, (32)

where we have introduced the shorthand notation,

φn(k) = �((k + n)(k + n − 1)) − �(k(k − 1)), (33)

which we shall call the structure factor for convenience. From (32) it is evident that

K̂−|k, 0〉 = 0. (34)

Hence, |k, 0〉 can be taken as the fiducial state. Also from (31) follows that

|k, n〉 = 1√
[φn(k)]!

(K̂+)
n|k, 0〉. (35)

In the above, we have used the generalized factorial notation signifying

[φn(k)]! =
n∏

l=1

φl(k), [φ0(k)]! = 1, (36)

which will also be used later for other sequences of functions. Furthermore, for simplicity, we
express φn(k) by φn.

3. Coherent states for suΦ(1, 1)

Now we wish to construct generalized coherent states for su�(1, 1) which accommodate
those of the Barut–Girardello type and the Perelomov type as special cases. By the Barut–
Girardello type (BG-type) and the Perelomov type (P-type), we mean the coherent states for
the nonlinear su(1, 1) which are reducible to the Barut–Girardello SU(1, 1) coherent states
and the Perelomov SU(1, 1) coherent states in the linear limit, respectively.

3.1. Generalized coherent states

First, we introduce a generalized exponential function,

[e(ν)]x =
∞∑

n=0

xn

[νn]!
(37)

defined on a base sequence {ν1, ν2, . . . , νn} with limn→∞ |νn| �= 0. Then we consider a set of
states constructed on the fiducial state (34) as

|k, ζ 〉 = N−1
� (|ζ |)[e(ν)]ζ K̂+ |k, 0〉, (38)

where ζ ∈ C. This is similar in the form to the definition of the Perelomov SU(1, 1) coherent
states (2). However, we take this as a unified treatment of the BG-type and the P-type. By the
definition of the generalized exponential function (37), the state (38) is expressed as

|k, ζ 〉 = N−1
� (|ζ |)

∞∑
n=0

(ζ K̂+)
n

[νn]!
|k, 0〉. (39)
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Use of (35) further leads (39) to an alternative form

|k, ζ 〉 = N−1
� (|ζ |)

∞∑
n=0

√
[φn]!

[νn]!
ζ n|k, n〉. (40)

These states are normalized to unity with

|N�(|ζ |)|2 =
∞∑

n=0

[φn]!

([νn]!)2
|ζ |2n. (41)

Here, the radius of convergence is

R = lim
n→∞

|νn|2
|φn| . (42)

The states (40), parameterized by a continuous complex number ζ , share a number of the
properties that the coherent states are to possess. They are not in general orthogonal. From
the Schwarz inequality, we have

〈k, ζ |k, ζ ′〉 = N∗−1
�

(|ζ |)N−1
�

(|ζ ′|)
∞∑

n=0

[φn]!

([νn]!)2
(ζ ∗ζ ′)n � 1, (43)

which is not zero when ζ �= ζ ′. They resolve unity,

1̂ =
∫

dμ(ζ, ζ ∗)|k, ζ 〉〈k, ζ |, (44)

if the integration measure can be found in the form

dμ(ζ, ζ ∗) = 1

2π
|N�(|ζ |)|2ρ(|ζ |2) d|ζ |2 dϕ. (45)

Here ζ = |ζ |eiϕ(0 � ϕ < 2π), and the weight function ρ(|ζ |2) is to be determined by its
moments, ∫ ∞

0
ρ(t)tn dt = ([νn]!)2

[φn]!
, (46)

where we have let t = |ζ |2. The non-orthogonality (43) together with the resolution of unity
(44) shows that the states form an overcomplete basis in the representation space spanned by
the discrete eigenstates of the compact operator K̂0 bounded below. Note also that these states
are temporally stable for a system with the Hamiltonian Ĥ = h̄ω(K̂0 − k) as the states (40)
evolve according to

e−iĤ t/h̄|k, ζ 〉 = |k, ζe−iωt 〉. (47)

With these properties, the states constructed in (40) may be considered as generalized coherent
states for su�(1, 1).

3.2. Coherent states for su2p−1(1,1)

Next, we impose on su�(1, 1) the polynomial condition,

�(x) =
p∑

r=1

αrx
r (αr ∈ R), (48)

where α1 > 0, αp �= 0, d�/dx > 0 and x � −1/4. This is the same as (12) applied to su�(2).
Under this condition, su�(1, 1) becomes a polynomial su(1, 1) algebra of order 2p−1, which
we denote by su2p−1(1, 1). In the limit that αr → 0 for r = 2, 3, . . . , p, the structure function
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for p = 1 becomes �(x) = α1x. In the resultant linear algebra su1(1, 1), we can let α1 = 1
without loss of generality. Thus, we identify su1(1, 1) with the usual linear su(1, 1) algebra.

For su2p−1(1, 1), the structure factor φn of (33) takes the form

φn =
p∑

r=1

αr [(k + n)r(k + n − 1)r − kr(k − 1)r ] = n(2k + n − 1)χn, (49)

where

χn =
p∑

r=1

r∑
s=1

αr [k(k − 1)]r−s[(k + n)(k + n − 1)]s−1. (50)

Note that for large n

χn ∼ O(n2p−2), φn ∼ O(n2p). (51)

It is evident that χn = α1 and φn = n(2k + n − 1) for p = 1. This means that χn for p > 1
characterizes the nonlinear deformation of su2p−1(1, 1). In this regard, we refer to χn as the
deformation factor.

The generalized factorial of φn given by (49) is

[φn]! = n!(2k)n[χn]!, (52)

where used is the Pochhammer symbol

(z)n = �(z + n)

�(z)
= (−1)n

�(1 − z)

�(1 − z − n)
. (53)

The deformation factor χn of (50) is an inhomogeneous polynomial of degree 2p − 2
which can be written as

χn = αp

2p−2∏
i=1

(n − ai), (54)

where ai’s are the roots of χn = 0 with respect to n. Its generalized factorial can be expressed
as

[χn]! = χ1χ2 . . . χn = αn
p

2p−2∏
i=1

(1 − ai)n. (55)

Substitution of (55) into (52) yields

[φn]! = αn
pn!(2k)n

2p−2∏
i=1

(1 − ai)n. (56)

Inserting (52) into (40) and (41), we obtain a formal expression for the coherent states for
the polynomial algebra su2p−1(1, 1),

|k, ζ 〉 = N−1
p (|ξ |)

∞∑
n=0

√
n!(2k)n[χn]!

[νn]!
ζ n|k, n〉 (57)

and

|Np(|ζ |)|2 =
∞∑

n=0

n!(2k)n[χn]!

([νn]!)2
|ζ |2n. (58)

The coherent states (57) remain to be formal until [νn]! is specified. In order to accommodate
the set of SU(1, 1) coherent states as a limiting case, we have to choose appropriately [νn]!.
In the proceeding sections, we specifically consider two cases: the Barut–Girardello type
(BG-type) whose states go over to the Barut–Girardello SU(1, 1) states in the linear limit
(p = 1) and the Perelomov type (P-type) whose coherent states approach the Perelomov
SU(1, 1) states in the same limit.
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4. Coherent states of the Barut–Girardello type

Out of the generalized coherent states (57) formally constructed for the su2p−1(1, 1), we select
the BG-type states by letting

νn = φn. (59)

With this choice, (40) reads

|k, ξ 〉 = N−1
p (|ξ |)

∞∑
n=0

ξn

√
[φn]!

|k, n〉, (60)

where we have let ζ = ξ for the BG-type. Because of (51), the radius of convergence of (60)
is infinity. This means that the BG-type states (60) can be defined on the full complex plane
of ξ . It is easy to verify by utilizing (31) that the coherent states (60) are indeed eigenstates of
the non-Hermitian operator K̂+,

K̂+|k, ξ 〉 = ξ |k, ξ 〉, (61)

with complex eigenvalues ξ . More explicitly, substitution of (56) into (60) yields

|k, ξ 〉 = N−1
p (|ξ |)

∞∑
n=0

{
αn

pn!(2k)n

2p−2∏
i=1

(1 − ai)n

}−1/2

ξn|k, n〉. (62)

The normalization factor is

|Np(|ξ |)|2 =
∞∑

n=0

1

n!(2k)n
∏2p−2

i=1 (1 − ai)n

( |ξ |2
αp

)n

(63)

which can be expressed in the closed form as

|Np(|ξ |)|2 = 0F2p−1(2k, 1 − a1, 1 − a2, . . . , 1 − a2p−2; |ξ |2/αp), (64)

where pFq is Pochhammer’s generalized hypergeometric function defined by

pFq(α1, α2, . . . , αp; γ1, γ2, . . . , γq; z) =
∞∑

n=0

(α1)n(α2)n · · · (αp)n

(γ1)n(γ2)n · · · (γq)n

zn

n!
.

The hypergeometric series 0Fq is analytic at any z. Hence, the normalization factor (64) is
convergent for all values of |ξ |2/αp.

The inner product of two such states takes the form

〈k, ξ |k, ξ ′〉 = N∗−1
p (|ξ |)N−1

p (|ξ ′|)0F2p−1(2k, 1 − a1, 1 − a2, . . . , 1 − a2p−2; ξ ∗ξ ′/αp). (65)

The coherent states thus constructed for su2p−1(1, 1) are able to resolve unity if the weight
function ρ(|ξ |2) is determined as follows. Inserting (56) into (46) we obtain∫ ∞

0
ρ(t)tn dt = αn

pn!(2k)n

2p−2∏
i=1

(1 − ai)n (66)

or rewriting with n = s − 1∫ ∞

0
ρ(t)t s−1 dt = (αp)s−1 �(s)�(2k − 1 + s)�(−a1 + s)�(−a2 + s) · · · �(−a2p−2 + s)

�(2k)�(1 − a1)�(1 − a2) · · · �(1 − a2p−2)
,

(67)

from which the weight function can be found by the inverse Mellin transformation (see formula
7.811.4 in [18]) in terms of Meijer’s G-function as

ρ(|ξ |2) =
[
αp�(2k)

2p−2∏
i=1

�(1 − ai)

]−1

G
2p 0
0 2p

( |ξ |2
αp

∣∣∣∣0, 2k − 1,−a1,−a2, . . . ,−a2p−2

)
. (68)
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With the weight function (68) for the measure (45) the resolution of unity (44) can be
achieved.

So far we have selected the BG-type coherent states (62) out of the generalized coherent
states (40). It is rather straightforward to show that the constructed states (62) are indeed
reducible to the Barut–Girardello SU(1, 1) states in the linear limit. If the deformation factor
tends to unity, i.e., χn → 1, then [φn]! → n!(2k)n. For p = 1 and α1 = 1, the normalization
factor (64) takes the form,

|N1(|ξ |2)|2 = 0F1(2k; |ξ |2) = �(2k)|ξ |1−2kI2k−1(2|ξ |), (69)

where Iν(z) is the modified Bessel function of the first kind. Thus, in the linear limit the
coherent states (62) become

|k, ξ 〉 = N−1
1 (|ξ |)

∞∑
n=0

1√
n!(2k)n

ξn|k, n〉. (70)

The coherent states (70) are indeed the Barut–Girardello SU(1, 1) coherent states [2]. The
weight function that enables the states (70) to resolve the unity follows from∫ ∞

0
ρ(t)t s−1 dt = �(s)(2k)s−1, (71)

the result being

ρ(|ξ |2) = 1

�(2k)
G20

02(|ξ |2|0, 2k − 1) = 2|ξ |2k−1

�(2k)
K2k−1(2|ξ |), (72)

where Kν(z) is the modified Bessel function of the second kind.

5. Coherent states of the Perelomov type

Our next task is to construct a set of the Perelomov-type states from (57). To this end, we
choose

νn = nχn (73)

and let ζ = η to write (57) in the form,

|k, η〉 = N−1
p (|η|)

∞∑
n=0

√
[φn]!

n![χn]!
ηn|k, n〉, (74)

or, using (52),

|k, η〉 = N−1
p (|η|)

∞∑
n=0

√
(2k)n

n![χn]!
ηn|k, n〉. (75)

The radius of convergence for (75) is obtained by

R = lim
n→∞

|nχn|2
n(2k + n)|χn| = lim

n→∞ |χn|, (76)

whose result depends on the parameter p. Since χn = α1 for p = 1, the radius of convergence
is finite, i.e., R = α1. If p �= 1, again from (51), the radius R becomes infinity. Substitution
of (56) and (54) converts (75) into

|k, η〉 = N−1
p (|η|)

∞∑
n=0

[
(2k)n

n!
∏2p−2

j=1 (1 − aj )n

]1/2 (
η√
αp

)n

|k, n〉, (77)

9
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where the normalization factor in (77) is given by

|Np(|η|)|2 = 1F2p−2(2k; 1 − a1, 1 − a2, . . . , 1 − a2p−2; |η|2/αp) (78)

which is convergent for any real value of |η|2/αp if p > 1. The weight function ρ(|η|2)
needed to resolve the unity can be determined by∫ ∞

0
ρ(t)tn dt = n![χn]!

(2k)n
. (79)

Utilizing [χn]! of (55) and letting n = s − 1, we rewrite this as

∫ ∞

0
ρ(t)t s−1 dt = �(2k)∏2p−2

j=1 �(1 − aj )

αs−1
p �(s)

�(2k − 1 + s)

2p−2∏
j=1

�(−aj + s) (80)

from which we obtain the weight function

ρ(|η|2) = �(2k)

αp

∏2p−2
j=1 �(1 − aj )

G
2p−1 0
1 2p−1

(
|η|2
αp

∣∣∣∣∣ 2k − 1

0,−a1,−a2, . . . ,−a2p−2

)
(81)

valid for all values of |η|2/αp if p > 1, and for 0 < |η|2/α1 < 1 if p = 1.
In the linear limit χn → α1, the normalization factor (78) tends to

|N1(|η|)|2 = 1F0(2k; |η|2/α1) = (1 − |η|2/α1)
−2k. (82)

Therefore, the coherent states (77) become

|k, η〉 = (1 − |η|2/α1)
k

∞∑
n=0

[
(2k)n

n!

]1/2 (
η√
α1

)n

|k, n〉. (83)

With α1 = 1, the last expression (83) coincides with Perelomov’s result for the SU(1, 1)

coherent states [3]. For p = 1 and α1 = 1, the weight function (81) reduces to

ρ(|η|2) = �(2k)G10
11

(
|η|2

∣∣∣∣2k − 1
0

)
. (84)

With the help of the identity

G10
11

(
z

∣∣∣∣2k − 1
0

)
= 1

�(2k − 1)
1F0(2 − 2k; z) = 1

�(2k − 1)
(1 − z)2k−2, (85)

valid for 0 < |z| < 1, the weight function can be simplified to the form

ρ(|η|2) = (2k − 1)
(
1 − |η|2)2k−2

(86)

which is defined only on the Poincaré disk. Furthermore, in order for the weight function to
remain positive, it is necessary to demand that 2k > 1.

6. Coherent states for the cubic algebra

In this section, we study the cubic case in more detail with one of the conditionally solvable
problems in supersymmetric (SUSY) quantum mechanics proposed by Junker and Roy [8].

10
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6.1. The cubic su(1, 1) algebra

The cubic su(1, 1) algebra (p = 2) is the simplest special case of the odd-polynomial
su2p−1(1, 1) for which the structure function is quadratic,

�(x) = α1x + α2x
2, (87)

where α1 > 0 and α2 �= 0. The deformed algebra (14) with this quadratic structure function
becomes a cubic algebra of the form

[K̂0, K̂±] = ±K̂±, [K̂+, K̂−] = −2α1K̂0 − 4α2K̂
3
0. (88)

The deformation factor for the cubic algebra is

χn = α1 + α2{(k + n)(k + n − 1) + k(k − 1)}, (89)

which can be written as

χn = α2(n − a+)(n − a−) (90)

with the roots

a± = −1

2
(2k − 1) ± 1

2

{
2 − (2k − 1)2 − 4

α1

α2

}1/2

. (91)

Hence, the structure factor defined by (49) reads

φn(k) = α2n(2k + n − 1)(n − a+)(n − a−), (92)

with which the ladder operators K̂+ and K̂− work in the representation space of su3(1, 1) as

K̂+|k, n〉 =
√

α2(n + 1)(2k + n)(n + 1 − a+)(n + 1 − a−)|k, n + 1〉 (93)

K̂−|k, n〉 =
√

α2n(2k + n − 1)(n − a+)(n − a−)|k, n − 1〉. (94)

The coherent states of the BG-type and the P-type can be constructed straightforwardly for
the cubic algebra.

6.2. Conditionally solvable problems

At this point, we reformulate the conditionally solvable broken SUSY problem in [8] in a way
appropriate to the present polynomial su(1, 1) scheme.

In SUSY quantum mechanics (see, e.g., [14]), the partner Hamiltonians are given by

Ĥ± = 1
2 p̂2 + V±(x̂). (95)

The partner potentials are expressed in terms of the SUSY potential W(x) as

V±(x) = 1
2 {W 2(x̂) ± i[p̂,W(x̂)]}, (96)

where [x̂, p̂] = i(h̄ = 1). The partner Hamiltonians (95) may also be written as

Ĥ + = ÂÂ†, H− = Â†Â, (97)

where

Â = 1√
2

(ip̂ + W(x̂)) , Â† = 1√
2

(−ip̂ + W(x̂)) . (98)

Let the partner eigenequations be expressed by

Ĥ±
∣∣ψ(±)

n

〉 = E(±)
n

∣∣ψ(±)
n

〉
, n = 0, 1, 2, . . . . (99)

If SUSY is broken [14],

E(+)
n = E(−)

n > 0 (100)

11
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and

Â†∣∣ψ(+)
n

〉 =
√

E
(+)
n

∣∣ψ(−)
n

〉
, Â

∣∣ψ(−)
n

〉 =
√

E
(−)
n

∣∣ψ(+)
n

〉
. (101)

By definition, for conditionally solvable problems [8], the SUSY potential W(x̂) is
separable to two parts as

W(x̂) = U(x̂) + f (x̂), (102)

where U(x) is a shape-invariant SUSY potential and f (x) is a function satisfying the equation,

f 2(x̂) + 2U(x̂)f (x̂) + i[p̂, f (x̂)] = 2(ε − 1), (103)

ε being the adjustable parameter a certain value of which makes the problem solvable. The
partner potentials are written as

V+(x̂) = 1
2 (U 2(x̂) + i[p̂, U(x̂)]) + ε − 1, (104)

V−(x̂) = 1
2 (U 2(x̂) − i[p̂, U(x̂)]) − i[p̂, f (x̂)] + ε − 1. (105)

Since V+(x̂) is a shape-invariant potential, the system of Ĥ + is exactly solvable. The potential
V−(x̂) is not shape invariant, but the eigenvalue problem with Ĥ− becomes conditionally
solvable.

As a specific example, we take, as in [8], a modified radial harmonic oscillator with
broken SUSY, for which

U(x) = x +
γ + 1

x
(γ � 0) (106)

and

f (x) = d

dx
ln 1F1

(
1

2
− ε

2
, γ +

3

2
;−x2

)
(107)

in the coordinate representation. In order for the confluent hypergeometric function to be
convergent for the whole range of x, the parameter ε must be subjected to the condition

ε + 2εγ + 2 > 0. (108)

This is indeed the condition on ε under which the modified oscillator becomes exactly solvable.
The potential V+(x) composed of the SUSY potential (106) is

V+(x) = 1

2
x2 +

γ (γ + 1)

x2
+ γ + ε +

1

2
, (109)

which is shape invariant by choice. Although the exact energy spectrum of the Hamiltonian
Ĥ + can be calculated by the standard Gendenstein procedure [15] or by using the semiclassical
broken SUSY formula [16], we employ here an algebraic approach [11, 13]. To this end, we
introduce the following operators,

Ĉ0 = 1

2

(
Ĥ + − g1̂

)
Ĉ1 = 1

4

(
p̂2 − x̂2 +

γ (γ + 1)

x̂2

)
(110)

Ĉ2 = 1

4
(x̂p̂ + p̂x̂)

where g = γ + ε + 1/2. It is then easy to show that they obey the su(1, 1) algebra,

[Ĉ0, Ĉ±] = ±Ĉ±, [Ĉ+, Ĉ−] = −2Ĉ0. (111)

12
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where Ĉ± ≡ Ĉ1 ± iĈ2. The Casimir operator is

Ĉ2 ≡ Ĉ2
0 − Ĉ2

1 − Ĉ2
2 (112)

which turns out to be

Ĉ2 = 4γ (γ + 1) − 3

16
1̂. (113)

On the basis {|c, n〉} that diagonalizes Ĉ2 and Ĉ0 simultaneously,

C2|c, n〉 = c(c − 1)|c, n〉, C0|c, n〉 = (c + n)|c, n〉, (114)

where c ∈ R+ and n ∈ N0. From (113) and (114), we recognize that the modified radial
harmonic oscillator under consideration is characterized by the constant,

c = 1
4 (2γ + 3), (115)

and that the spectrum of Ĥ + is

E(+)
n = 2(c + n) + g = 2n + 2γ + 2 + ε. (116)

Since the Hamiltonian Ĥ + is diagonalized on the basis that diagonalizes the operator Ĉ0, we
identify the su(1, 1) states |c, n〉 characterized by (115) with the eigenstates |ψ+

n 〉 of Ĥ +. Thus,
the ladder operators act on the SUSY states as

Ĉ+

∣∣ψ(+)
n

〉 =
√

(n + 1)(n + γ + 3/2)
∣∣ψ(+)

n+1

〉
, (117)

Ĉ−
∣∣ψ(+)

n

〉 =
√

n(n + γ + 1/2)
∣∣ψ(+)

n−1

〉
. (118)

Next, we define the operators

D̂0 = 1
2 Ĥ− = 1

2 Â†Â, D̂± = Â†Ĉ±Â. (119)

Use of (101), (117) and (118) enables us to show that D̂±, when acting on the SUSY states
|ψ(−)

n 〉, behave like the ladder operators,

D̂+|ψ(−)
n 〉 =

√
E

(−)
n

√
(n + 1)(n + γ + 3/2)

√
E

(+)
n+1|ψ(−)

n+1〉 (120)

and

D̂−|ψ(−)
n 〉 =

√
E

(−)
n

√
n(n + γ + 1/2)

√
E

(+)
n−1|ψ(−)

n−1〉. (121)

What we wish to stress here is that the operators introduced by (119) form a cubic algebra,

[D̂0, D̂±] = ±D̂±, [D̂+, D̂−] = −2(g2 − (2c − 1)2 + 1)D̂0 + 12gD̂2
0 − 16D̂3

0, (122)

where g = γ + ε + 1/2 and c = (2γ + 3)/4. This algebra contains a quadratic term. It is
not certain whether the representation we have constructed for the odd-polynomial algebra
su2p−1(1, 1) in section 2 is applicable to this case. Therefore, we select the parameter ε such
that g = 0. Then we have the odd-polynomial cubic su(1, 1) algebra of interest,

[D̂0, D̂±] = ±D̂±, [D̂+, D̂−] = −(
3
2 − 2γ (γ + 1)

)
D̂0 − 16D̂3

0 (123)

provided that

3 − 4γ (γ + 1) > 0. (124)

The two conditions (108) and (124) lead us to the restrictions on ε or γ ,

− 1 < ε < 1
2 or 0 < γ < 1

2 , (125)

under which we shall work from now on.
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By comparing (123) with the cubic algebra (88), we determine the parameters of (87)

α1 = 3
4 − γ (γ + 1) α2 = 4, (126)

from which follows the structure function

�(x) = {
3
4 − γ (γ + 1)

}
x + 4x2. (127)

From (16) the Casimir operator for the cubic algebra (123) is given by

D2 = −D̂+D̂− +
{

3
4 − γ (γ + 1)

}
D̂0(D̂0 + 1) + 4D̂2

0(D̂0 + 1)2. (128)

With the basis {|d, n〉}, we diagonalize D̂0 in (123) and the Casimir operator D2 of the cubic
algebra as

D2|d, n〉 = d(d − 1)|d, n〉, D̂0|d, n〉 = (d + n)|d, n〉, (129)

where d ∈ R+ and n ∈ N0. Since the operator Ĥ− is also diagonalized, we consider the
su3(1, 1) states |d, n〉 as the eigenstates of Ĥ− yielding the spectrum,

E(−)
n = 2n + 2d. (130)

In broken SUSY, as is mentioned above, the spectra of the partner Hamiltonians are identical,
that is, E(+)

n = E(−)
n = En. Hence, comparing (116) and (130) with the condition g = 0, we

have

En = 2n + γ + 3
2 , (n = 0, 1, 2, . . .). (131)

This implies that the representation space of su3(1, 1) is characterized by the constant

d = 1
4 (2γ + 3). (132)

In this regard, we may identify the base states |d, n〉 of the cubic algebra (123) with the
eigenstates |ψ(−)

n 〉 of Ĥ−. Even though the characteristic constant d of the representation
of the cubic algebra (123) coincides with the characteristic constant c, given by (115), of
the su(1, 1) algebra (111), the two states |c, n〉 and |d, n〉 are distinct; namely, as we have
identified in the above,∣∣ψ(+)

n

〉 = |c, n〉, ∣∣ψ(−)
n

〉 = |d, n〉 (133)

which are related by (101).
Substitution of the values (126) and 2k − 1 = γ + 1/2(k = d) into (91) yields

a± = − 1
2

(
γ + 1

2

) ± 1
2 . (134)

The corresponding deformation factor is

χn = (
2n + γ − 1

2

) (
2n + γ + 3

2

)
, (135)

which turns out to be

χn = En−1En, (136)

where En = E(+)
n = E(−)

n . The structure factor is written as

φn = n
(
n + γ + 1

2

)
EnEn−1. (137)

Therefore, with d = (2γ + 3)/4, we have

D̂+|d, n〉 =
√

(n + 1)(n + γ + 3/2)EnEn+1|d, n + 1〉 (138)

D̂−|d, n〉 =
√

n(n + γ + 1/2)EnEn−1|d, n − 1〉, (139)

which are consistent with the SUSY relations (120) and (121).
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6.3. Coherent states for the conditionally solvable oscillator

Utilizing the deformation factor (135) we obtain

[χn]! = 4n
(

1
2γ + 3

4

)
n

(
1
2γ + 7

4

)
n

(140)

with which we can construct two sets of coherent states as follows.

Coherent states of the BG-type: Since the generalized factorial of the structure factor can be
written as

[φn]! = n!(γ + 3/2)n[χn]!, (141)

substitution of (140) into (141) yields

[φn]! = 22nn!(γ + 3/2)n(γ /2 + 3/4)n(γ /2 + 7/4)n. (142)

Inserting (142) into (62) we have the coherent states for the cubic algebra of the modified
radial oscillator

|ξ 〉 = N−1
2 (|ξ |)

∞∑
n=0

1√
n!(γ + 3/2)n(γ /2 + 3/4)n(γ /2 + 7/4)n

(
ξ

2

)n

|ψ(−)
n 〉 (143)

with the normalization

N2
2 (|ξ |) = 0F3

(
γ + 3/2, (2γ + 3)/4, (2γ + 7)/4; |ξ |2/4

)
. (144)

It is apparent that the above coherent states are temporarily stable in Klauder’s sense [17] that
they evolve with the effective Hamiltonian,

Ĥ = 1
2ωh̄

(
Ĥ− − γ − 3

2

)
(145)

as

e−iĤt/h̄|ξ 〉 = |ξe−iωt 〉. (146)

The weight function for the resolution of unity (44) is

ρ(|ξ |2) = [4�(γ + 3/2)�(γ /2 + 3/4)�(γ /2 + 7/4)]−1

×G40
04

(|ξ |2/4 |0, γ + 1/2, (2γ − 1)/4, (2γ + 3)/4
)
. (147)

The coherent states obtained here are basically equivalent to those proposed by Junker and
Roy [8] if ε = −γ − 1/2. Figure 1 shows the above weight function for the allowed range of
parameter γ .

Coherent states of the P-type: With the same deformation factor (140), the coherent states of
the P-type for the cubic case follow from (77),

|η〉 = N−1
2 (|η|)

∞∑
n=0

[
(γ + 3/2)n

n!(γ /2 + 3/4)n(γ /2 + 7/4)n

]1/2 (η

2

)n

|ψ(−)
n 〉, (148)

with

N2
2 (|η|) = 1F2

(
γ + 3/2; γ /2 + 3/4, γ /2 + 7/4; |η|2/4

)
. (149)

These coherent states are also temporarily stable under the time evolution with the Hamiltonian
Ĥ, that is,

e−iĤt/h̄|η〉 = |η e−iωt 〉. (150)

The resolution of unity is achieved with the weight function,

ρ(|η|2) = �(γ + 3/2)

4�(γ /2 + 3/4)�(γ /2 + 7/4)
G30

13

( |η|2
4

∣∣∣∣ γ + 1/2
0, (2γ − 1)/4, (2γ + 3)/4

)
, (151)

which is shown in figure 2. The P-type coherent states are of course different from the BG-type
states.
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Figure 1. The weight function ρ(t) of equation (147) for the Barut–Girardello coherent states
with t = |ξ |2, which is plotted for the allowed range of the characteristic parameter γ of the
conditionally solvable oscillator.

γ

ρ

Figure 2. The weight function ρ(t) of equation (151) for the Perelomov-type coherent states with
t = |η|2, plotted for the same oscillator.

7. Concluding remarks

Extending the deformed algebra su�(2) of Bonatos, Danskaloyannis and Kolokotronis to
su�(1, 1) by a simple analytic continuation, and imposing the polynomial condition on the
structure function, we have proposed a unified way to construct a discrete set of coherent states
of the Barut–Girardello type and of the Perelomov type for the polynomial su(1, 1) algebra.
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We have also studied the connection between the cubic algebra su(1, 1) and the
conditionally solvable oscillator with broken SUSY. We found that the eigenstates of the
Hamiltonian Ĥ + in SUSY quantum mechanics can be identified with a standard basis
of the su(1, 1) algebra whereas the set of eigenstates of the other partner Hamiltonian Ĥ−
is identified with a representation space of the cubic algebra su3(1, 1). Then we construct
coherent states of the Barut–Girardello type and of the Perelomov type for the conditionally
solvable system.

The procedure used in this paper works only for polynomials of odd degree. In order to
accommodate a polynomial algebra of even degree, such as the quadratic algebra, we have to
modify the approach. Although our consideration is focused on the discrete class, a question
remains open as to whether the same procedure may be extended to a continuous class in a
way similar to that of an earlier work [19].
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